CHROMATOGRAPHIE EN PHASE GAZEUSE (CPG)

Généralités

- Technique de séparation applicable aux composés gazeux ou susceptibles d'être volatilisés par élévation de T°
- Limitée aux composés thermostables et suffisamment volatils (MM<300)</p>

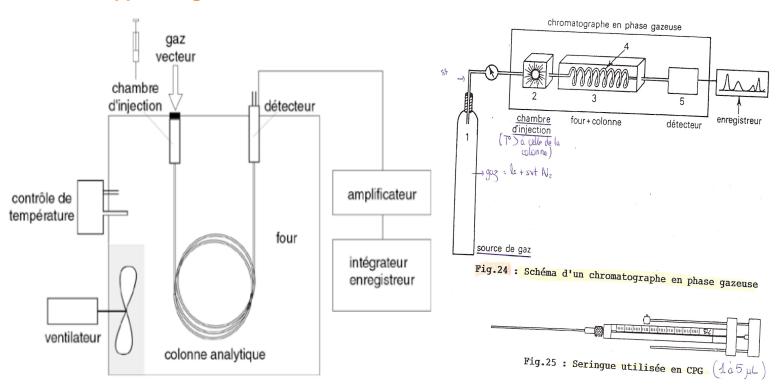
> Principales applications :

- o analyse pétrochimique
- o industrie des arômes, des parfums
- o environnement
- o indus pharmaceutique →place ↓ au profit de la chromato liq
- PM = gaz =gaz vecteur
- > PS (ds colonne):
 - Sous forme de grains → colonnes remplies
 - o ou de film déposé sur la paroi interne de la colonne capillaire ou semi capillaire

> Echantillon:

o soit liq déposé sur support = chromato gaz/liq

méca = partage


soit solide = chromato gaz/solide

méca = adsorption

la rétention est fct° :

- de la nature de la PS (polarité)
- de la T° de la colonne
- PM = rôle passif (transport)

1 Appareillage

1.1 Source de gaz

- <u>Nature</u>: N₂, He₂, H₂++, Ar ou mélange argon/méthane.
- Propriétés: Pur, inerte avec le détecteur et l'ech, peu visqueux, bonne conductibilité thermique
- Sous P° (sécurité!), détendu sous 1 à 4 bar (via détendeurs)
- Paramètres essentiels pour la reproductibilité → la régulation du débit
 - o Régulation électronique de façon à être à débit constant
 - o 1 à 25 ml/min en fct° du détecteur et Ø de la colonne
 - o Possibilité de faire une programmation du D° de gaz (pour améliorer le temps d'analyse)
- Mesure du débit avec débimètre (ex :à bulle de savon)
 - o tubulure latérale en verre reliée à la sortie de la colonne
 - o calcule le tps que met une bulle de savon pour parcourir x mm

1.2 Chambre d'injection

- L'injecteur doit vaporiser l'ech puis l'entraîner ds la tête de la colonne
- ➤ Chauffé à 30°C < colonne</p>
- > Si echantillon gazeux :
 - seringue spéciale
 - o injecteur à boucle
- Si echantillon liq ou solide en solution :
 - µseringues (fig 25)
 - Injection de 1 à 5 μl
- ➤ Types d'injection (≠ en fct du type de colonne) :
 - Colonnes remplies :
 - <u>injection par <mark>vaporisation directe</u> (fig 26):
 </u></mark>
 - microseringue → septum → tt l'ech est vaporisé puis transféré ds la colonne par le gaz vecteur
 - utilisé pour colonnes remplies et semi capillaire.
 - o injection par la technique de l'espace de tête « headspace »
 - pour composés très volatils : traces /matrice cplxe ,peu volatile
 - →dosage solvant résiduel ds Pa
 - ech ds flacon type antibio + bouchon transperçable, puis chauffage (60 à 80°) pdt tps donné (30' à 1H)
 - prélèvement, injection vap en eq avec ech
 - les composés volatils sont ds vap à une conc

 à celle ds le liq
 - technique quantitative :dosage /gamme d'étalonnage ds les même cdt°
 - √ sélective
 - ✓ ut pour doser arôme ds vin
 - méthode PE : dosage des solvants résiduels /PA

Colonnes capillaires:

- injection avec/sans division ou split/splitless (fig 27)
 - seringues ,septum
 - split

 gaz vecteur ds chambre de vap ; vanne de fuite : 1à10% pénètre ds colonne
 - splitless →pour solution très diluées ;vanne de fuite fermée (la solution injectée est volatalisée à chaud puis recondensée en tête de colonne à basse T°. Après élimination du solvant, les substances sont volatilisées par augmentation progressive de la T°).

- <u>Injection à aiguille (injecteur de Ross)</u> (permet l'élimination du solvant) : après dépôt à froid à l'extrémité d'une aiguille de verre et évaporation du solvant, la solution est introduite directement au sommet de la colonne. (système intéressant en CPG-SM)
- o Injecteur « on column » (injection directe en tête de colonne capillaire refroidie

1.3 Four

- Enceinte où est située la colonne
- Régulation T° au 1/10ème de degré près → Stabilité thermique!
- Ventilation forcée en permanence → T° homogène
- Mode de travail: isotherme ou en programmation de T° (!! retour à la T° initiale doit être rapide)

1.4 Colonnes

→ Généralement enroulées en spires - il en existe de 3 types :

Colonnes remplies :

- o de moins en moins ut (les + anciennes)
- o 3 à 5 m x 1 à 4 mm de Ø interne
- o tube en acier inoxydable ou verre pyrex, contenant des grains
- o tube laisse trace métallique qui catalyse la réaction à chaud
- o grains : support imprégnés de 3 à 25% de φs liq (partag G ou + rarement support seul)
- Colonnes capillaires +++(dite de Golay) :
 - o 15 à 100 m (très longues) x 0.1 à 0.35 mm Ø interne
 - o silice fondue revêtue de polyimide à l'ext
 - o PS = déposé sur la paroi interne de la paroi sous forme de :
 - film liquide+++ (partage G-L) → colonne WCOT
 - solide = part. poreuses imprégnées de PS (adsorption G-S) → colonne SCOT

NB : actuellement ,greffage chimique sur paroi de silice au lieu de dépôt de film

Colonnes semi capillaires = Mégabores =macrobores =ultrabores (bores =trous)

- 5 à 50 m x 530 µm Ø interne
- o aspect de colonne capillaire

Caractéristiques et avantage des colonnes capillaires ou semi capillaires :

	C. remplies	C.capillaires
Perméabilité	2.10^-7 cm ²	100.10^-7 cm ²
Volume φm/φs	10 - 100	100 – 1000
h	0.5 à 1 mm	0.1 à 0.5 mm

NB : la perméabilité est proportionnelle au Ø des particules dp² pour colonne remplies au rayon r² pour colonne capillaires

♦ Perméabilité de 10^-7↔ 10 trous de 1 μm²

C. capillaire a une perméabilité \sim 50 x > à celle d'une C. remplie

→perte de charge faible ,colonnes longues possibles ;N élevé

\Diamond vol C. capillaire >C. remplie →+ de gaz vecteur (φ s)

→analyse + rapide

mais faible capacité (on ne peut chargé trop la colonne→ut solutions très diluées

♦ h : hauteur équivalente d'un plateau théorique

h=Longueur colonne/N

+ colonne effi + h petit

→bcp + faible avec C. capillaire car effi élevé →pic + étroit →meilleur résolution

NB: l'efficacité d'une colonne (nb de plateaux théoriques) augmente quand :

- Diamètre interne diminue
- Longueur augmente (sinon changer de PS)

1.5 Phase stationnaire (PS)

- → Sont au cœur de la séparation chromatographique
- > Liquide +++
 - Imprégnées sur un support solide de silice / colonnes remplies (grande stabilité thermique ; inerte)
 - Déposés sous forme de film / colonnes capillaires
 - Caractérisée par :
 - Structure chimique
 - Polarité
 - Aptitude à dissoudre les molécules
 - T° max d'utilisation
 - Nature:
 - 4 groupes :

Polyesters de glycols → PS polaire
 Polyethers de glycol (Carbowax) → PS polaire

• Silicones = polysiloxane → PS variable en fct du greffage

Carbures saturés → PS apolaire

- Les polysiloxanes sont les + utilisés (huiles ,gommes silicones)
 - avec substituants divers pour conférer des polarités ≠tes (greffage)
 - Polarité variable en fct° de la ramification (n)

Si on diminue l'épaisseur du film :

- on augmente le rapport de phase : β=Vg/VI
- on diminue la rétention du soluté
- on diminue le facteur de capacité
- on diminue la T° d'élution
- → csqce : il faut augmenter le nb de plateaux théoriques

Les films épais : séparent les composés à basse T°éb

Les films minces : séparent les composés à haut PM et T°éb élevée

P301 du moniteur

> Solide:

- → Petites particules de granulométrie homogène :
 - Les tamis moléculaires (cristaux d'aluminosilicates) → retient les molécules en fct de leur taille
 - Polymères poreux PORAPAK (d' benzènique) → séparation des composés polaires à T°eb élevés (ex : alcool, amines...)

NB : Une diminution de l'épaisseur de la PS entraine :

- -une diminution de la rétention des solutés
- -une diminution de k

(intéressant si cp à T°d'élution élevée)

- -une diminution de la T° d'élution
- → Il faut alors augmenter N pour avoir une Rs donnée.

1.6 Détecteurs

- Dans un bloc chauffé à T° >30°C four
- Le + courant = détecteur à ionisation de flamme
- Caractérisé par :
 - Sélectivité (possibilité de détecter spécifiquement 1 ou pls composés)
 - Sensibilité (limite de détection)
 - o Gamme de linéarité (proportionnalité réponse/concentration)
 - Stabilité

a) Catharomètre (conductibilité thermique)

- Conductibilité du gaz vecteur est une cste qui len présence de m* étrangères
- 2 blocs métalliques thermostatés :
 - o 1 bloc de ref parcouru par un gaz vecteur en permanence
 - 1 bloc de mesure parcouru par ce qui sort de la colonne
- > Cavité avec filament thermosensible qui a une résistance R chauffée électriquement
- > Electrodes = branches du pont de Wheastone
- Ds bloc de mesure :
 - \circ Qd pas de soluté \rightarrow equilibre T° ds pont de Wheastone
 - Qd présence de soluté→↓ conductivité thermique ,T° modifiée ,résistance modifiée
 - le pont est déseq →on enregistre deseq de T°
- Avantage = détecteur universel, simple, non destructif
- Inconvénient = peu sensible (de l'ordre du μg), non spécifique
- →ut srtt pour l'analyse de gaz

b) Ionisation de flamme (ou FID) +++

- Courant gazeux sortant de la colonne arrive ds flamme (H2 + air ou O2) à 2100°C placée entre 2 électrodes
- M* organiques brûlées ds flamme → courant faible d'ion proportionnel au nbre de m* brûlées
- Ces ions sont collectés entre 2 électrodes portées à une ddp de 10 à 300 volt
 - L'une sert de polarisation (masse)
 - o L'autre sert d'anode et recueille le courant
- Ce courant est transformé et amplifié par électromètre en une T° mesurée
- Réponse : fct° des réglages α/H2 (∃ un optimum)
 Variable pour chaque fct° organique

Avantages :

- o Détecteur quasi universel →répond à ttes les m* organiques (sauf formol et ac formique)
- o très sensible (du μg au ng) → détecteur par excellence en CPG

Inconvénients :

- Destruction de l'échantillon
- Non spécifique (tous les cp organiques)

c) Thermoïonique (ou NPD)

- Même principe que la FID, mais présence d'un sel de métal alcalin de Rb ou Ce placé près de la flamme multiplie la réponse des composés azotés et phosphatés 200 à 500 x
 - →céramique dopée avec sel ds l'axe de la flamme
- Détecte trace de composés N ou P qd composés matrice cplxe
- Détecteur très sensible et sélectif pour N et P
- Utilisation :
 - o Pour pesticides organophosphorés et m* azotées ds milieux bio
 - o Médicaments azotés (barbituriques, hydantoines, ATD...)
- > Sensibilité et sélectivité recherchée ds matrice cplxe

d) Photométrie de flamme (FDP)

- -composé PouS ds flamme α-H2 réductrice (pour éviter la formation d'oxydes)
- →excitation et émission de lumière
- analyse l'nrj lumineuse à l'aide de filtres (P:526 nm, S:394 nm)
- -très sensible et sélectif pour S et P
- -analyse des pesticides P et S (sensibilité : ng-pg et sélectivité recherchée ds matrice complexe)

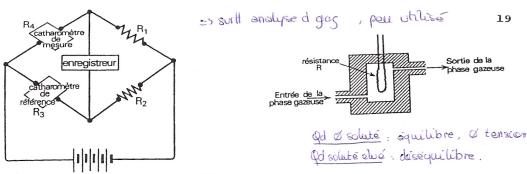
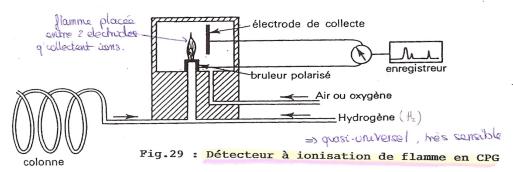



Fig.28 : Détecteur catharométrique en CPG

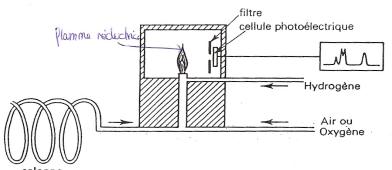


Fig.30 : Détecteur à photométrie de flamme en CPG

e) Capture d'e- (ECD)

- capacité de certaines molécules à capter les électrons émis par une source radioactive et de former des ions négatifs susceptibles de se combiner aux ions + du gaz vecteur → diminution du courant de base.
- source radioactive émettrice de rayonnement β- de faible nrj (Ni ou H) ionise le gaz vecteur selon relation :

 β - + N2 \rightarrow N2+ + e- courant de base

 $M + e \rightarrow M$ M = substance électophile (CI, Br

→enregistre signaux négatifs

le courant de base (collecté par électrodes) \downarrow en présence d'une substance électrophile que pureté des solvants

pas de solvants chlorés ,pas de bouchon PVP...

réglementation particulière (localisation ,maintenance ,inspection)

- •très sélectif et très sensible pour substances électrophiles
- →détecteur donnant info structurale
- → Intéressant pour le dosage des médicaments susceptibles de donner des dérivés fluoroacétylés

f) Spectrométrie de masse

- Identification des composés à partir du spectre de masse (SM), du spectre de fragmentation, svt comparaison avec bibliothèque de spectre
- Technique d'ionisation = impact électronique
- Les colonnes capillaires en silice fondue permettent ce couplage
- Ce couplage CPG/SM est maintenant très répandu pour identifier solvant résiduel ds PA
 - g) IR

(IR moyen)

Permet identifier m*

- •peu sensible
- •peu répandu
 - h) Emission atomique
 - i) Chimiluminescence
 - j) Détection de radioactivité

2 Mécanisme de rétention et optimisation en CPG

2.1 Règles de rétention

- Rétention des solutés en fct° de l'affinité vis-à-vis de la PS
- > Eq PS/PM suivant 2 mécanismes :
 - o adsorption G/S
 - o partage G/L
- > Eq caractérisé par cte de distribution :
 - Kd=Cs/Cm
 - o dpd de la nature du soluté et de la PS

NB: PM = rôle passif en CPG

Règle de rétention :

- PS apolaire :
 - force de dispersion (interaction)
 - ≠ce ds ces forces reflétées ds les points d'ébullition
 - solutés apolaires sont les + retenus et sortent ds l'ordre du point d'ébullition
 - ✓ hexane (69°c) heptane (18°c) octane (126°c)
 - avec même point d'ébullition les solutés polaires sont les retenus
 - ✓ propanol(1) heptane (2) T°eb=98°c
- PS polaire :
 - interaction dipôle-dipôle en + des forces de dispersion
 - solutés polaires sont les + retenus (point d'eb syt importants pour det rétention)
 - avec même point d'eb les solutés peu polaire sont les − retenus
 → heptane (1) propanol (2) point d'eb 98°C

2.2 Optimisation de la séparation (Tr et largeur des pics)

> Optimiser la Sélectivité (α)

- o dépend de la polarité de la PS
 - on choisit une φs qui donne des interactions =qui se ressemble ,s'assemble
- T° de séparation :
 - après avoir choisi la PS ,on fait varier la T° du four
 - qd T° ↑ α ↑ rétention ↓
 - Une ↑ de 20°C fait diminuer le Tr de moitié!

\triangleright α ne dépend pas de :

- la granulométrie de la PS
- l'épaisseur du film de lig qui recouvre PS
- o du débit du gaz vecteur
- Réaction utilisées si compo difficilement séparables = la dérivation :

$$\begin{array}{ccc} & \text{CH 3} & \text{CH3} \\ \circ & \underline{\text{Silylation}} & : \text{RO}\underline{\text{H}} + \text{Si} & \text{CH3} & \rightarrow & \text{R-O-}\underline{\text{Si-CH3}} \\ & \text{CH3} & & \text{CH3} \end{array}$$

- -On fixe gpmt triméthyl sylilé TMS sur composé à H mobile (alcool ,phénol)
- -Entraine une baisse de la polarité et augmente la volatilité (et la stabilité)
- -Mais risque de réaction incomplète -> mélange inexploitable en quantitatif
 - Alcoylation
 ROH→ROR' éther
 RCOOH→RCOOR' ester
- -Ut ds dosage des AG ds alim (point eb élevé (LH)
 - o Acylation $\begin{array}{c} \mathsf{ROH} + \mathsf{R-C+=O} \to \mathsf{R-O-C=O} \\ \mathsf{Carbocation} & \mathsf{R} \\ \mathsf{R-NH2} + \mathsf{R'-C+=O} \to \mathsf{R-C=O} \\ \mathsf{NH2} \end{array}$

Utilisation de la « dérivation » si :

- o Compo à T°eb trop élevée
- o Compo thermolabiles, ou instables à T° élevée
- o MM trop faible
- Compo à forte polarité (pic larges)
- o Compo non détectables de façon sensible ou spécifique

NB : dérivation améliore la sensibilité et la spécificité si couplage CPG

2.3 Optimisation de la détection

- Réponse du détecteur :
 - Stabilité
 - o Temps de réponse bref pour ne pas perturber la séparation des pics
 - Reproductibilité fiabilité
 - o Domaine de linéarité
 - Limite de détection bruit de fond
- Nature de l'échantillon : choix du détecteur en fonction
- Couplage CPG-SM

2.4 Optimisation de la quantification

- Normalisation interne
- Méthode des ajouts dosés
- > Etalonnage interne

3 Applications

Avantage :

- o Capacité à séparer des constituants d'un mélange complexe
- o Rapidité d'exécution
- o Précision dans le dosage de petits échantillons
- o Possibilités d'automatisation

Limite:

- \circ composé de PM>300 \rightarrow non volatilisables ,substances ioniques thermolabiles
- Injection directe pour les solutés volatils ou volatilisables
- o Injection après dérivation (transformation chimique) qd
 - T° d'eb trop élevée
 - trop polaire
 - thermolabile
 - détection peu sensible et peu sélective.

Utilisation de la CPG + couplage :

- Contrôle analytique pharmaceutique en industrie :
 - Contrôle des matières premières / impuretés, solvants résiduels
 - Contrôle en cours de fabrication de l'intégrité de la molécule
 - Contrôle du pdt fini / teneur
 - Etude de stabilité dans le temps / pdts de dégradation
- Dosage en milieux biologiques (!! extraction et purification) :
 - Etudes de biodisponibilité

- Etudes métaboliques (identification /SM)
- Suivi thérapeutique au cours d'un ttt
- Dosage biochimiques (AA, stéroïdes → 17 cétostéroïdes et oestrogènes)
- o <u>Dosage en toxicologie :</u>
 - o Recherche de toxique en intoxication aiguë (méthanol, EG...)
 - o Dosage des drogues : amphétamines, opiacés, cannabinoïdes
 - o Contrôle anti-dopage
 - o Dépistage de toxicomanie
- o Agroalimentaire:
 - Recherche et dosage des pesticides
 - Recherche et dosage et des nitrosamines (nitrites)
- Industrie chimique ,cosmétologie :
 - analyse des essences ,parfums ,arômes ,hydrocarbures